LECTURE 22

Basic Properties of Groups

Theorem 22.1. Let G be a group, and let $a, b, c \in G$. Then $\imath(i) G$ has a unique identity element. ı(ii) The cancellation property holds in G :

$$
a * b=a * c \quad \Rightarrow \quad b=c
$$

ı(iii) Each element of G has a unique inverse.

Proof.

(i) Suppose e and e^{\prime} satisfy

$$
\begin{array}{rlrl}
g * e & =e * g=g \quad, \quad \forall g \in G \\
g * e^{\prime} & =e^{\prime} * g=g \quad, & \forall g \in G
\end{array}
$$

Then

$$
e=e * e^{\prime}=e^{\prime}
$$

(ii) Suppose

$$
a * b=a * c
$$

Since an element a^{-1} such that $a^{-1} * a=e$ exists for all $a \in G$, we have

$$
b=e * b=a^{-1} * a * b=a^{-1} * a * c=e * c=c
$$

(iii)

Suppose

$$
a * b=e=b * a \quad \text { and } \quad a * b^{\prime}=e=b^{\prime} * a
$$

Then

$$
b=b * e=b *\left(a * b^{\prime}\right)=(b * a) * b^{\prime}=e * b^{\prime}=b^{\prime}
$$

Corollary 22.2. If G is a group and $a, b \in G$, then $\imath(i)(a b)^{-1}=a^{-1} b^{-1} \cdot \imath(i i)\left(a^{-\mathbf{1}}\right)^{-\mathbf{1}}=a$.
Definition 22.3. Let G be a group and let n be a positive integer. Then

$$
\begin{array}{rcr}
a^{n} & \equiv a * a * \cdots * a & \text { (n factors) } \\
a^{0} & \equiv e & \\
a^{-n} & \equiv a^{-1} * a^{-1} * \cdots * a^{-1} & (n \text { factors })
\end{array}
$$

Theorem 22.4. Let G be a group and let $a \in G$. Then for all $m, n \in \mathbb{Z}$

$$
\begin{aligned}
a^{m} * a^{n} & =a^{m+n} \\
\left(a^{n}\right)^{m} & =a^{n m}
\end{aligned}
$$

Definition 22.5. Let G be a group. An element $a \in G$ is said to have finite order if $a^{k}=e$ for some positive integer k. In this case, the order of a is the smallest positive integer n such that $a^{n}=e$. If there exists no $n \geq 1$ such $a^{n}=e$ then a is said to have infinite order.

Examples.

Recall that every ring is a abelian group under addition. In particular, the rings \mathbb{Z}_{n} are abelian groups. In this case,

$$
\begin{aligned}
{[a]^{n} } & = & & {[a] *[a] * \cdots *[a] }
\end{aligned} \quad(n \text { factors })
$$

and so every element of the group \mathbb{Z}_{n} (under addition) has finite order.
In the multiplicative group \mathbb{R}^{\times}of non-zero real numbers, the element 2 has infinite order since

$$
2^{k} \neq 1 \quad, \quad \forall k \geq 1
$$

Theorem 22.6. Let G be a group and let $a \in G$. (i) If a has infinite order, then the elements a^{k}, with $k \in \mathbb{Z}$, are all distinct.
ı(ii) If a has finite order n, then

$$
a^{k}=e \quad \Leftrightarrow \quad n \mid k
$$

and

$$
a^{i}=a^{j} \quad \Leftrightarrow \quad i \equiv j \quad(\bmod n)
$$

々(iii) If a has finite order n and $n=t d$ with $d>0$, then a^{t} has order d.

Proof.

(i) We shall prove the contrapositive: i.e., if the a^{k} are not all distinct, then a has finite order. Suppose $a^{i}=a^{j}$ with $i<j$. Then multiplying both sides by $a^{-i}=\left(a^{-1}\right)^{i}$ yields

$$
e=a^{0}=a^{j-i}
$$

Since $j-i>0$, this says that a has finite order.
(ii) Let a be an element of finite order n. If n divides k, say $k=n t$, then

$$
a^{k}=a^{n t}=\left(a^{n}\right)^{t}=e^{t}=e
$$

Conversely, suppose $a^{k}=e$. By the Division Algorithm,

$$
\begin{equation*}
k=n q+r \quad, \quad 0 \leq r<n \tag{22.1}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
e=a^{k}=a^{n q+r}=a^{n q} a^{r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r} \tag{22.2}
\end{equation*}
$$

By the definition of order, n is the smallest positive integer such that $a^{n}=e$. But the division algorithm requires $0 \leq r<n$. Thus, the only way to maintain both (??) and (??) without contradiction is to take $r=0$. Thus, $n \mid k$.

Finally, note that $a^{i}=a^{j}$ if and only if $a^{i-j}=e$. But in view of the argument above, this is possible if and only if $n \mid(i-j)$. In other words, $i \equiv j(\bmod n)$.
(iii) Assume a has finite order n and that $n=t d$. We then have

$$
\left(a^{t}\right)^{d}=a^{t d}=a^{n}=e
$$

We must show that d is the smallest positive integer with this property. If k is any positive integer such that $a^{k}=e$, then $a^{t k}=e$. Therefore $n \mid t k$ by part (ii) above. Say

$$
t k=n q=(t d) q
$$

Then $k=d q$. Since d and k are positive and $d \mid k$, we must have $d \leq k$.
Corollary 22.7. Let G be a group and let $a \in G$. If $a^{i}=a^{j}$ with $i \neq j$, then a has finite order.

Proof.
This is an immediate consequence of statement (i) of the preceding theorem.

