
LECTURE 22

Basic Properties of Groups

Theorem 22.1. Let G be a group, and let a, b, c ∈ G. Then ı(i) G has a unique identity element. ı(ii) The
cancellation property holds in G:

a ∗ b = a ∗ c ⇒ b = c .

ı(iii) Each element of G has a unique inverse.

Proof.

(i) Suppose e and e′ satisfy

g ∗ e = e ∗ g = g , ∀ g ∈ G

g ∗ e′ = e′ ∗ g = g , ∀ g ∈ G

Then

e = e ∗ e′ = e′ .

(ii) Suppose

a ∗ b = a ∗ c

Since an element a−1 such that a−1 ∗ a = e exists for all a ∈ G, we have

b = e ∗ b = a−1
∗ a ∗ b = a−1

∗ a ∗ c = e ∗ c = c .

(iii)

Suppose

a ∗ b = e = b ∗ a and a ∗ b′ = e = b′ ∗ a .

Then

b = b ∗ e = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = e ∗ b′ = b′ .

Corollary 22.2. If G is a group and a, b ∈ G, then ı(i) (ab)−1 = a
−1

b
−1. ı(ii)

(
a
−1

)
−1

= a.

Definition 22.3. Let G be a group and let n be a positive integer. Then

a
n

≡ a ∗ a ∗ · · · ∗ a (n factors)

a
0

≡ e

a
−n

≡ a
−1

∗ a
−1

∗ · · · ∗ a
−1 (n factors) .

Theorem 22.4. Let G be a group and let a ∈ G. Then for all m,n ∈ Z

am ∗ a
n = a

m+n

(an)m = a
nm

.

Definition 22.5. Let G be a group. An element a ∈ G is said to have finite order if ak = e for some

positive integer k. In this case, the order of a is the smallest positive integer n such that an = e. If there

exists no n ≥ 1 such a
n
= e then a is said to have infinite order.
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Examples.

Recall that every ring is a abelian group under addition. In particular, the rings Zn are abelian groups. In
this case,

[a]n = [a] ∗ [a] ∗ · · · ∗ [a] (n factors)

≡ [a] + [a] + · · ·+ [a] (n terms)

= n[a]

= [na]

= [0]

≡ e

and so every element of the group Zn (under addition) has finite order.

In the multiplicative group R× of non-zero real numbers, the element 2 has infinite order since

2k �= 1 , ∀k ≥ 1 .

Theorem 22.6. Let G be a group and let a ∈ G. ı(i) If a has infinite order, then the elements ak, with
k ∈ Z, are all distinct.

ı(ii) If a has finite order n, then

ak = e ⇔ n | k

and

ai = aj ⇔ i ≡ j (mod n) .

ı(iii) If a has finite order n and n = td with d > 0, then at has order d.

Proof.

(i) We shall prove the contrapositive: i.e., if the ak are not all distinct, then a has finite order. Suppose
ai = aj with i < j. Then multiplying both sides by a−i = (a−1)i yields

e = a0 = aj−i .

Since j − i > 0, this says that a has finite order.

(ii) Let a be an element of finite order n. If n divides k, say k = nt, then

ak = ant = (an)t = et = e .

Conversely, suppose ak = e. By the Division Algorithm,

(22.1) k = nq + r , 0 ≤ r < n .

Consequently,

(22.2) e = ak = anq+r = anqar = (an)qar = eqar = ar .

By the definition of order, n is the smallest positive integer such that an = e. But the division algorithm
requires 0 ≤ r < n. Thus, the only way to maintain both (??) and (??) without contradiction is to take
r = 0. Thus, n | k.

Finally, note that ai = aj if and only if ai−j = e. But in view of the argument above, this is possible if and
only if n | (i− j). In other words, i ≡ j (mod n).

(iii) Assume a has finite order n and that n = td. We then have

(at)d = atd = an = e .



22. BASIC PROPERTIES OF GROUPS 112

We must show that d is the smallest positive integer with this property. If k is any positive integer such
that ak = e, then atk = e. Therefore n | tk by part (ii) above. Say

tk = nq = (td)q .

Then k = dq. Since d and k are positive and d | k, we must have d ≤ k.

Corollary 22.7. Let G be a group and let a ∈ G. If ai = aj with i �= j, then a has finite order.

Proof.

This is an immediate consequence of statement (i) of the preceding theorem.


