LECTURE 22

Basic Properties of Groups

THEOREM 22.1. Let G be a group, and let a,b,c € G. Then (i) G has a unique identity element. (i) The
cancellation property holds in G:
axb=a+xc = b=c

1(#it) Each element of G has a unique inverse.

Proof.

(1) Suppose e and e’ satisfy
gxe = exg=g , Vge G
gxe' = exg=g , Yge@
Then

(i) Suppose
axb=axc
Since an element ¢! such that = * a = e exists for all @ € G, we have
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b=exb=a *axb=a " xaxc=exc=c¢

(iii)

Suppose

axb=e=bx*a and axb=e=bxa
Then

b=bxe=bx(axd)=(bxa)xb =exd =V
|

COROLLARY 22.2. If G is a group and a,b € G, then 1(i) (ab)™1 = a~1b7 1. 1(ii) (a’l)fl =aq.
DEFINITION 22.3. Let G be a group and let n be a positive integer. Then

a =a*xak---*ka (n factors)

a =e

a =a lxag!

*oooka L (n factors)
THEOREM 22.4. Let G be a group and let a € G. Then for allm,n € Z
a"xa" = a

(an)m — Can
DEFINITION 22.5. Let G be a group. An element a € G is said to have finite order if a® = e for some

positive integer k. In this case, the order of a is the smallest positive integer n such that o™ = e. If there
exists no n > 1 such a™ = e then a is said lo have infinite order.
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Examples.

Recall that every ring is a abelian group under addition. In particular, the rings Z, are abelian groups. In
this case,

[a]® = [a] * [a] * - - - * [a] (n factors)
= [a] + [a] + - - + [a] (n terms)

=e
and so every element of the group Z, (under addition) has finite order.
In the multiplicative group R* of non-zero real numbers, the element 2 has infinite order since
k41 Vk>1

THEOREM 22.6. Let G be a group and let a € G. 1(i) If a has infinite order, then the elements a*, with
k € Z, are all distinct.

1(ii) If a has finite order n, then

and
a'=d = i=j (modn)

1(iii) If a has finite order n and n = td with d > 0, then o' has order d.

Proof.

(i) We shall prove the contrapositive: i.e., if the a® are not all distinct, then a has finite order. Suppose
a' = @’ with i < j. Then multiplying both sides by =% = (a~1)? yields

Since j — @ > 0, this says that a has finite order.
(ii) Let @ be an element of finite order n. If n divides k, say k = nt, then
Cbk — ant — (an)t — et —e

Conversely, suppose a” = e. By the Division Algorithm,

(22.1) k=ng+r , 0<r<n
Consequently,
(22.2) e=a"=a""" =a™a" = (a")9a" = e%a” = a”

By the definition of order, n is the smallest positive integer such that a™ = e. But the division algorithm
requires 0 < 7 < n. Thus, the only way to maintain both (??) and (?7) without contradiction is to take
r=0. Thus, n | k.

Finally, note that a® = &’ if and only if '~/ = e. But in view of the argument above, this is possible if and
only if n | (¢ — j). In other words, ¢ = j (mod n).

(iii) Assume a has finite order  and that n = td. We then have

(at)d — atd —a"=e¢
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We must show that d is the smallest positive integer with this property. If k is any positive integer such
that a® = e, then a'* = e. Therefore n | tk by part (ii) above. Say

thk =ng = (td)q
Then k = dq. Since d and & are positive and d | k, we must have d < k. [I

COROLLARY 22.7. Let G be a group and let a € G. If a' = &/ with i # j, then a has finite order.

Proof.

This is an immediate consequence of statement (i) of the preceding theorem.



